-

Smart Home Technologies

Automation and Robotics

Motivation

- Intelligent Environments are aimed at improving the inhabitants' experience and task performance
 - Automate functions in the home
 - Provide services to the inhabitants
- Decisions coming from the decision maker(s) in the environment have to be executed.
 - Decisions require actions to be performed on devices
 - Decisions are frequently not elementary device interactions but rather relatively complex commands
 - Decisions define set points or results that have to be achieved
 - Decisions can require entire tasks to be performed

Automation and Robotics in Intelligent Environments

- Control of the physical environment
 - Automated blinds
 - Thermostats and heating ducts
 - Automatic doors
 - Automatic room partitioning
- Personal service robots
 - House cleaning
 - Lawn mowing
 - Assistance to the elderly and handicapped
 - Office assistants
 - Security services

Robots

- Robota (Czech) = A worker of forced labor
 From Czech playwright Karel Capek's 1921 play "R.U.R" ("Rossum's Universal Robots")
- Japanese Industrial Robot Association (JIRA): "A device with degrees of freedom that can be controlled."
 - Class 1 : Manual handling device
 - Class 2 : Fixed sequence robot
 - Class 3 : Variable sequence robot
 - Class 4 : Playback robot
 - Class 5 : Numerical control robot
 - Class 6 : Intelligent robot

A Brief History of Robotics

- Mechanical Automata
 - Ancient Greece & Egypt
 - Water powered for ceremonies
 - 14th − 19th century Europe
 - Clockwork driven for entertainment
- Motor driven Robots
 - 1928: First motor driven automata
 - 1961: Unimate
 - First industrial robot
 - 1967: Shakey
 - Autonomous mobile research robot
 - 1969: Stanford Arm
 - Dextrous, electric motor driven robot arm

Maillardet's Automaton

Unimate

Robots

Robot Manipulators

Mobile Robots

Robots

Walking Robots

Humanoid Robots

Autonomous Robots

- The control of autonomous robots involves a number of subtasks
 - Understanding and modeling of the mechanism
 - Kinematics, Dynamics, and Odometry
 - Reliable control of the actuators
 - Closed-loop control
 - Generation of task-specific motions
 - Path planning
 - Integration of sensors
 - Selection and interfacing of various types of sensors
 - Coping with noise and uncertainty
 - Filtering of sensor noise and actuator uncertainty
 - Creation of flexible control policies
 - Control has to deal with new situations

Traditional Industrial Robots

- Traditional industrial robot control uses robot arms and largely pre-computed motions
 - Programming using "teach box"
 - Repetitive tasks
 - High speed
 - Few sensing operations
 - High precision movements
 - Pre-planned trajectories and task policies
 - No interaction with humans

Problems

- Traditional programming techniques for industrial robots lack key capabilities necessary in intelligent environments
 - Only limited on-line sensing
 - No incorporation of uncertainty
 - No interaction with humans
 - Reliance on perfect task information
 - Complete re-programming for new tasks

Autonomy

- Robots have to be capable of achieving task objectives without human input
- Robots have to be able to make and execute their own decisions based on sensor information

Intuitive Human-Robot Interfaces

- Use of robots in smart homes can not require extensive user training
- Commands to robots should be natural for inhabitants

Adaptation

Robots have to be able to adjust to changes in the environment

Robots for Intelligent Environments

- Service Robots
 - Security guard
 - Delivery
 - Cleaning
 - Mowing
- Assistance Robots
 - Mobility
 - Services for elderly and People with disabilities

Autonomous Robot Control

- To control robots to perform tasks autonomously a number of tasks have to be addressed:
 - Modeling of robot mechanisms
 - Kinematics, Dynamics
 - Robot sensor selection
 - Active and passive proximity sensors
 - Low-level control of actuators
 - Closed-loop control
 - Control architectures
 - Traditional planning architectures
 - Behavior-based control architectures
 - Hybrid architectures

(x, y, z)

 Forward kinematics describes how the robots joint angle configurations translate to locations in the world

 θ_2

 Jacobians calculate how the speed and configuration of the actuators translate into velocity of the robot

Mobile Robot Odometry

- In mobile robots the same configuration in terms of joint angles does not identify a unique location
 - To keep track of the robot it is necessary to incrementally update the location (this process is called odometry or dead reckoning)

$$\begin{pmatrix} x \\ y \\ \theta \end{pmatrix}^{t+\Delta t} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}^{t} + \begin{pmatrix} v_{x} \\ v_{y} \\ \varpi \end{pmatrix} \Delta t$$

Example: A differential drive robot

$$v_x = \cos(\theta) \frac{r(\dot{\phi}_L + \dot{\phi}_R)}{2}, v_y = \sin(\theta) \frac{r(\dot{\phi}_L + \dot{\phi}_R)}{2}$$
$$\varpi = \frac{r}{d} (\dot{\phi}_L - \dot{\phi}_R)$$

Actuator Control

- To get a particular robot actuator to a particular location it is important to apply the correct amount of force or torque to it.
 - Requires knowledge of the dynamics of the robot
 - Mass, inertia, friction
 - For a simplistic mobile robot: F = m a + B v
 - Frequently actuators are treated as if they were independent (i.e. as if moving one joint would not affect any of the other joints).
 - The most common control approach is PD-control (proportional, differential control)
 - For the simplistic mobile robot moving in the x direction:

$$F = K_P (x_{desired} - x_{actual}) + K_D (v_{desired} - v_{actual})$$

Robot Navigation

- Path planning addresses the task of computing a trajectory for the robot such that it reaches the desired goal without colliding with obstacles
 - Optimal paths are hard to compute in particular for robots that can not move in arbitrary directions (i.e. nonholonomic robots)
 - Shortest distance paths can be dangerous since they always graze obstacles
 - Paths for robot arms have to take into account the entire robot (not only the endeffector)

Sensor-Driven Robot Control

- To accurately achieve a task in an intelligent environment, a robot has to be able to react dynamically to changes ion its surrounding
 - Robots need sensors to perceive the environment
 - Most robots use a set of different sensors
 - Different sensors serve different purposes
 - Information from sensors has to be integrated into the control of the robot

- Internal sensors to measure the robot configuration
 - Encoders measure the rotation angle of a joint

Limit switches detect when the joint has reached the limit

Robot Sensors

- Proximity sensors are used to measure the distance or location of objects in the environment. This can then be used to determine the location of the robot.
 - Infrared sensors determine the distance to an object by measuring the amount of infrared light the object reflects back to the robot
 - Ultrasonic sensors (sonars) measure the time that an ultrasonic signal takes until it returns to the robot

 Laser range finders determine distance by measuring either the time it takes for a laser beam to be reflected back to the robot or by measuring where the laser hits the object

Robot Sensors

- Computer Vision provides robots with the capability to passively observe the environment
 - Stereo vision systems provide complete location information using triangulation

- However, computer vision is very complex
 - Correspondence problem makes stereo vision even more difficult

Uncertainty in Robot Systems

- Robot systems in intelligent environments have to deal with sensor noise and uncertainty
 - Sensor uncertainty
 - Sensor readings are imprecise and unreliable
 - Non-observability
 - Various aspects of the environment can not be observed
 - The environment is initially unknown
 - Action uncertainty
 - Actions can fail
 - Actions have nondeterministic outcomes

Probabilistic Robot Localization

 $p(s)_{\spadesuit}$

Explicit reasoning about Uncertainty using Bayes filters:

$$b(x_t) = \eta \ p(o_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ b(x_{t-1}) \ dx_{t-1}^{p(s)}$$

- Used for:
 - Localization
 - Mapping
 - Model building

Deliberative Robot Control Architectures

 In a deliberative control architecture the robot first plans a solution for the task by reasoning about the outcome of its actions and then executes it

 Control process goes through a sequence of sencing, model update, and planning steps

Deliberative Control Architectures

Advantages

- Reasons about contingencies
- Computes solutions to the given task
- Goal-directed strategies

Problems

- Solutions tend to be fragile in the presence of uncertainty
- Requires frequent replanning
- Reacts relatively slowly to changes and unexpected occurrences

Behavior-Based Robot Control Architectures

In a behavior-based control architecture the robot's actions are determined by a set of parallel, reactive behaviors which map sensory input and state to actions.

	reason about behavior of objects	
Sensors —	plan changes to the world	•
	identify objects	
	monitor changes	
	build maps	Actuators
	explore	
	wander	
	avoid objects	

- Reactive, behavior-based control combines relatively simple behaviors, each of which achieves a particular subtask, to achieve the overall task.
 - Robot can react fast to changes
 - System does not depend on complete knowledge of the environment
 - Emergent behavior (resulting from combining initial behaviors) can make it difficult to predict exact behavior
 - Difficult to assure that the overall task is achieved

- Complex behavior can be achieved using very simple control mechanisms
 - Braitenberg vehicles: differential drive mobile robots with two light sensors

 Complex external behavior does not necessarily require a complex reasoning mechanism

Behavior-Based Architectures: Subsumption Example

- Subsumption architecture is one of the earliest behavior-based architectures
 - Behaviors are arranged in a strict priority order where higher priority behaviors subsume lower priority ones as long as they are not inhibited.

Subsumption Example

 A variety of tasks can be robustly performed from a small number of behavioral elements

© MIT AI Lab

Reactive, Behavior-Based Control Architectures

Advantages

- Reacts fast to changes
- Does not rely on accurate models
 - "The world is its own best model"
- No need for replanning

Problems

- Difficult to anticipate what effect combinations of behaviors will have
- Difficult to construct strategies that will achieve complex, novel tasks
- Requires redesign of control system for new tasks

Hybrid Control Architectures

- Hybrid architectures combine reactive control with abstract task planning
 - Abstract task planning layer
 - Deliberative decisions
 - Plans goal directed policies
 - Reactive behavior layer
 - Provides reactive actions
 - Handles sensors and actuators

Hybrid Control Policies

Task Plan:

Behavioral Strategy:

Example Task: Changing a Light Bulb

Hybrid Control Architectures

Advantages

- Permits goal-based strategies
- Ensures fast reactions to unexpected changes
- Reduces complexity of planning

Problems

- Choice of behaviors limits range of possible tasks
- Behavior interactions have to be well modeled to be able to form plans

Traditional Human-Robot Interface: Teleoperation

- Remote Teleoperation: Direct operation of the robot by the user
 - User uses a 3-D joystick or an exoskeleton to drive the robot
 - Simple to install
 - Removes user from dangerous areas
 - Problems:
 - Requires insight into the mechanism
 - Can be exhaustive
 - Easily leads to operation errors

Human-Robot Interaction in Intelligent Environments

- Personal service robot
 - Controlled and used by untrained users
 - Intuitive, easy to use interface
 - Interface has to "filter" user input
 - Eliminate dangerous instructions
 - Find closest possible action
 - Receive only intermittent commands
 - Robot requires autonomous capabilities
 - User commands can be at various levels of complexity
 - Control system merges instructions and autonomous operation
 - Interact with a variety of humans
 - Humans have to feel "comfortable" around robots
 - Robots have to communicate intentions in a natural way

Example: Minerva the Tour Guide Robot (CMU/Bonn)

© CMU Robotics Institute http://www.cs.cmu.edu/~thrun/movies/minerva.mpg

Intuitive Robot Interfaces: Command Input

- Graphical programming interfaces
 - Users construct policies form elemental blocks
 - Problems:
 - Requires substantial understanding of the robot
- Deictic (pointing) interfaces
 - Humans point at desired targets in the world or
 - Target specification on a computer screen
 - Problems:
 - How to interpret human gestures ?
- Voice recognition
 - Humans instruct the robot verbally
 - Problems:
 - Speech recognition is very difficult
 - Robot actions corresponding to words has to be defined

Intuitive Robot Interfaces: Robot-Human Interaction

- He robot has to be able to communicate its intentions to the human
 - Output has to be easy to understand by humans
 - Robot has to be able to encode its intention
 - Interface has to keep human's attention without annoying her
- Robot communication devices:
 - Easy to understand computer screens
 - Speech synthesis
 - Robot "gestures"

Example: The Nursebot Project

Nursebot Pearl

Assisting Nursing Home Residents

Longwood, Oakdale, May 2001 CMU/Pitt/Mich Nursebot Project

Human-Robot Interfaces

- Existing technologies
 - Simple voice recognition and speech synthesis
 - Gesture recognition systems
 - On-screen, text-based interaction
- Research challenges
 - How to convey robot intentions ?
 - How to infer user intent from visual observation (how can a robot imitate a human)?
 - How to keep the attention of a human on the robot ?
 - How to integrate human input with autonomous operation?

Integration of Commands and Autonomous Operation

- Adjustable Autonomy
 - The robot can operate at varying levels of autonomy
 - Operational modes:
 - Autonomous operation
 - User operation / teleoperation
 - Behavioral programming
 - Following user instructions
 - Imitation
 - Types of user commands:
 - Continuous, low-level instructions (teleoperation)
 - Goal specifications
 - Task demonstrations

"Social" Robot Interactions

- To make robots acceptable to average users they should appear and behave "natural"
 - "Attentional" Robots
 - Robot focuses on the user or the task
 - Attention forms the first step to imitation
 - "Emotional" Robots
 - Robot exhibits "emotional" responses
 - Robot follows human social norms for behavior
 - Better acceptance by the user (users are more forgiving)
 - Human-machine interaction appears more "natural"
 - Robot can influence how the human reacts

"Social" Robot Example: Kismet

Kismet

Regulating Interaction Intensity: Face stimulus (human)

Cynthia Breazeal (Ferrell) Brian Scassellati

MIT Artificial Intelligence Lab

"Social" Robot Interactions

Advantages:

- Robots that look human and that show "emotions" can make interactions more "natural"
 - Humans tend to focus more attention on people than on objects
 - Humans tend to be more forgiving when a mistake is made if it looks "human"
- Robots showing "emotions" can modify the way in which humans interact with them

Problems:

- How can robots determine the right emotion ?
- How can "emotions" be expressed by a robot ?

Human-Robot Interfaces for Intelligent Environments

- Robot Interfaces have to be easy to use
 - Robots have to be controllable by untrained users
 - Robots have to be able to interact not only with their owner but also with other people
- Robot interfaces have to be usable at the human's discretion
 - Human-robot interaction occurs on an irregular basis
 - Frequently the robot has to operate autonomously
 - Whenever user input is provided the robot has to react to it
- Interfaces have to be designed human-centric
 - The role of the robot is it to make the human's life easier and more comfortable (it is not just a tech toy)

Adaptation and Learning for Robots in Smart Homes

- Intelligent Environments are non-stationary and change frequently, requiring robots to adapt
 - Adaptation to changes in the environment
 - Learning to address changes in inhabitant preferences
- Robots in intelligent environments can frequently not be pre-programmed
 - The environment is unknown
 - The list of tasks that the robot should perform might not be known beforehand
 - No proliferation of robots in the home
 - Different users have different preferences

Adaptation and Learning In Autonomous Robots

- Learning to interpret sensor information
 - Recognizing objects in the environment is difficult
 - Sensors provide prohibitively large amounts of data
 - Programming of all required objects is generally not possible
- Learning new strategies and tasks
 - New tasks have to be learned on-line in the home
 - Different inhabitants require new strategies even for existing tasks
- Adaptation of existing control policies
 - User preferences can change dynamically
 - Changes in the environment have to be reflected

Learning Approaches for Robot Systems

- Supervised learning by teaching
 - Robots can learn from direct feedback from the user that indicates the correct strategy
 - The robot learns the exact strategy provided by the user
- Learning from demonstration (Imitation)
 - Robots learn by observing a human or a robot perform the required task
 - The robot has to be able to "understand" what it observes and map it onto its own capabilities
- Learning by exploration
 - Robots can learn autonomously by trying different actions and observing their results
 - The robot learns a strategy that optimizes reward

Learning Sensory Patterns

- Learning to Identify Objects
 - How can a particular object be recognized?
 - Programming recognition strategies is difficult because we do not fully understand how we perform recognition
 - Learning techniques permit the robot system to form its own recognition strategy
 - Supervised learning can be used by giving the robot a set of pictures and the corresponding classification
 - Neural networks
 - Decision trees

- Autonomous robots have to be able to learn new tasks even without input from the user
 - Learning to perform a task in order to optimize the reward the robot obtains (Reinforcement Learning)
 - Reward has to be provided either by the user or the environment
 - Intermittent user feedback
 - Generic rewards indicating unsafe or inconvenient actions or occurrences
 - The robot has to explore its actions to determine what their effects are
 - Actions change the state of the environment
 - Actions achieve different amounts of reward
 - During learning the robot has to maintain a level of safety

Example: Reinforcement Learning in a Hybrid Architecture

- Policy Acquisition Layer
 - Learning tasks without supervision
- Abstract Plan Layer
 - Learning a system model
 - Basic state space compression
- Reactive Behavior Layer
 - Initial competence and reactivity

Example Task: Learning to Walk

- Complex tasks are hard to learn since they involve long sequences of actions that have to be correct in order for reward to be obtained
- Complex tasks can be learned as shorter sequences of simpler tasks
 - Control strategies that are expressed in terms of subgoals are more compact and simpler
 - Fewer conditions have to be considered if simpler tasks are already solved
 - New tasks can be learned faster
 - Hierarchical Reinforcement Learning
 - Learning with abstract actions
 - Acquisition of abstract task knowledge

Example: Learning to Walk

Conclusions

- Robots are an important component in Intelligent Environments
 - Automate devices
 - Provide physical services
- Robot Systems in these environments need particular capabilities
 - Autonomous control systems
 - Simple and natural human-robot interface
 - Adaptive and learning capabilities
 - Robots have to maintain safety during operation
- While a number of techniques to address these requirements exist, no functional, satisfactory solutions have yet been developed
 - Only very simple robots for single tasks in intelligent environments exist